Article 9114

Title of the article

SYNTHESIS, STRUCTURE AND SPECTRAL-LUMINESCENT PROPERTIES OF NICKEL DOPED MAGNESIUM ALUMINOSILICATE GLASS-CERAMIC

Authors

Nishchev Konstantin Nikolaevich, Candidate of physical and mathematical sciences, associate professor, sub-department of general physics, director of the Institute of physics and chemistry, Ogarev Mordovia State University (68 Bolshevistskaya street, Saransk, Russia), nishchev@inbox.ru
Panov Andrey Aleksandrovich, Postgraduate student, Ogarev Mordovia State University (68Bolshevistskaya street, Saransk, Russia), aapanov@yandex.ru
Zaikin Artem Igorevich, Postgraduate student, Ogarev Mordovia State University (68 Bolshevistskaya street, Saransk, Russia), artem_zaikin@hotmail.com

Index UDK

535.33.34; 535.37; 548.73

Abstract

Background. Glass-ceramics (GC) has attracted researchers for over 50 years due to its unique physical properties. Thermal treatment of initial glass interrupted at a particular stage is the main way to obtain transparent GC with nanoscale inclusions. Combined XRD, SAXS and optical spectroscopy studies allow to investigate the occurring processes of nucleation and phase separation of GC. The aim of this work is to obtain Ni2+-doped transparent magnesium aluminosilicate GC and study its physical properties.
Materials and methods. Glasses of 28MgO-10Al2O3-8TiO2-xGa2O3-(54-x)SiO2+yNiO mol% systems were used as the host of Ni2+ (where x=0, 3, 5; y=0.001, 0.01, 0.1.). Nanostructured GC was obtained by sequential high temperature annealing of initial glass at temperatures 720º C and 740ºC, 760ºC and 780ºC for 2-5 hours. The phase composition of formed crystallites was determined by diffractometer PANanalitical Empyrean. The absorption spectra were carried out by dual-beam spectrophotometer Perkin Elmer Lambda 950. The GC structure was investigated by the small-angle X-ray scattering (SAXS) diffractometer Hecus S3-MICRO.
Results. The article presents the results of the study of formation of the crystal-line phase in Ni2+-doped magnesium aluminosilicate GC in the course of sequential high temperature treatment. Addition of Ga2O3 in the glass matrix leads to suppres-sion of the magnesium alumotitanate crystalline phases and to the increase of the aluminum-magnesium spinel phase. It is shown that the crystalline phase concentration and radius of gyration of inhomogeneities increase with growth of temperature of isochoric annealing. The radius of gyration of inhomogeneities changes from 20 to 120 Å with temperature growth. Reduction of NiO concentration leads to the increase of the radius of gyration of scattering domains. The luminescence spectra of GC are characterized by width peak centered at 1300-1400 nm. The half-width of the peak is 350 nm.
Conclusions. The authors obtained the Ni2+-doped transparent magnesium alumi-nosilicate GC. The influence of gallium oxide on the kinetics of crystalline phase deposition was investigated. It is shown that the GC, obtained by controlled crystallization of optical glasses, has a wide range of luminescence centered at 1300-1400 nm that matches with the telecommunication window.

Key words

glass-ceramics, small-angle X-ray scattering, nanoscale crystalline, isochoric annealing, absorption optical spectra, luminescence spectra.

Download PDF
References

1. Duke D. A., Chase G. A. Apllied Optics. 1968, vol. 7, no. 5, pp. 813–818.
2. Petzoldt J., Pannhorst W. Journal of Non-Crystalline Solids. 1991, vol. 129, no. 1, pp. 191–198.
3. Samson B. N., Tick P. A., Borrelli N. F. Optics Letters. 2001, vol. 26, no. 3, pp. 145–147.
4. Lipinska-Kalita K.E., Auzel F., Santa-Cruz P. Journal of Non-Crystalline Solids. 1996,vol.204,no.2, pp.188–195.
5. Auzel F., Lipinska-Kalita K. E., Santa-Cruz P. Optical Materials. 1996, vol. 5, no. 1, pp. 75–78.
6. Wang Y., Ohwaki J. Apllied Physics Letters. 1993, vol. 63, no. 24, pp. 3268–3270.
7. Tick P. A., Borrelli N. F., Cornelius L. K., Newhouse M. A. Journal Applied Physics. 1995, vol. 78, no. 11, pp.6367–6374.
8. Tikhomirov V. K., Seddon A. B., Ferrari M., Montagna M., Santos L. F., Almeida R. M. Journal of Non-Crystalline Solids. 2004, vol. 337, no. 2, pp. 191–195.
9. Nemova G., Kashyap R. Journal of the Optical Society of America B. 2012, vol. 12, no. 11, pp. 3034–3038.
10. Seznec V., Ma H. L., Zhang X. H., Nazabal V., Adam J.-L., Qiao X. S., Fan X. P. Optical Materials. 2006, vol. 29, no. 4, pp. 371–376.
11. Lin C., Dai S., Liu C., Song B., Xu Y., Chen F., Heo J. Applied Physics Letters. 2012, vol. 100, no. 23, pp. 231910–231914.
12. Komatsu T., Kim H. G., Shioya K., Matusita K., Tanaka K., Hirao K. Journal of Non-Crystalline Solids. 1996, vol. 208, no. 3, pp. 303–307.
13. Guignard M., Nazabal V., Ma H. L., Zhang X. H., Zeghlache H., Martinelli G., Quiquempois Y., Smektala F. European Journal of Glass Science and Technology Part B. 2007, vol. 48, no. 1, pp. 19–22.
14. Borrelli N. F. Journal Applied Physics. 1967, vol. 38, no. 11, pp. 4243–4247.
15. Zhilin A. A., Karapetyan G. O., Lipovskii A. A., Maksimov L. V., Petrovskii G. T., Ta-gantsev D. K. Glass Physics and Chemistry. 2000, vol. 26, no. 3, pp. 242–246.
16. Andrews L. J., Beall G. H., Lempicki A. Journal of Luminescence. 1986, vol. 36, no. 2, pp. 65–74.
17. Doenitz F.-D., Russ C., Vogel W. Journal of Non-Crystalline Solids. 1982, vol. 53, no. 3, pp. 315–324.
18. Kuleshov N. V., Mikhailov V. P., Scherbitsky V. G., Prokoshin P. V., Yumashev K. V. Journal of Luminescence. 1993, vol. 55, no. 5–6, pp. 265–269.
19. Donegan J. F., Bergin F. J., Glynn T. J., Imbusch G. F., Remeika J. P. Journal of Lumi-nescence. 1986, vol. 35, no. 1, pp. 57–63.
20. Petricevic V., Gayen S. K., Alfano R. R. Applied Optics. 1988, vol. 27, no. 20, pp. 4162–4163.
21. Kuleshov N. V., Shcherbitsky V. G., Mikhailov V. P., Kück S., Koetke J., Petermann K., Huber G. Journal of Luminescence. 1997, vol. 71, no. 4, pp. 265–268.
22. Stookey S. D. Journal of Industrial & Engineering Chemistry. 1959, vol. 51, no. 7, pp. 805–808.
23. Hummel F. A. Journal of the American Ceramic Society. 1951, vol. 34, no. 8, pp. 235–239.
24. Beall G. H., Duke D. A. Glass Science and Technology. 1983, vol. 1, pp. 404–445.
25. Spravochnik po proizvodstvu stekla. T. 2 [Glass production handbook]. Ed. I. I. Kitaygorodsky and S. I. Sil'vestrovich. Moscow: Gosstroyizdat, 1963, 820 p.
26. Poray-Koshits E. A., Vasilevskaya T. N., Golubkov V. V. Fizika i khimiya stekla [Physics and chemistry of glass]. 1980, vol. 6, no. 1, pp. 51–59.
27. Golubkov V. V. Fizika i khimiya stekla [Physics and chemistry of glass]. 1998, vol. 24, no. 3, pp. 289–304.
28. Golubkov V. V., Alekseeva I. P., Chuvaeva T. I. Fizika i khimiya stekla [Physics and chemistry of glass]. 1981, vol. 7, no. 1, pp. 47–54.
29. Golubkov V. V., Bek Dong Su, Dymshits O. S., Zhilin A. A., Chuvaeva T. I. Fizika i khimiya stekla [Physics and chemistry of glass]. 1997, vol. 23, no. 4, pp. 374–388.
30. Samson B. N., Pinckney L. R., Wang J., Beall G. H., Borelli N. F. Optic Letters. 2002, vol. 27, no. 15, pp. 1309–1311.
31. Wu B., Zhou S., Ren J., Qiao Y., Chen D., Zhu C., Qiu J. Journal of Physics and Chemistry of Solids. 2008, vol. 69, no. 4, pp. 891–894.
32. Dymshits O. S., Loiko P. A., Zhilin A. A., Alekseeva I. P., Yumashev K. V. Journal of Non-Crystalline Solids. 2013, vol. 376, no. 4, pp. 99–105.
33. Sigaev V. N., Golubev N. V., Ignat’eva E. S., Savinkov V. I., Campione M., Lorenzi R., Meinardi F., Paleari A. Nanotechnology. 2012, vol. 23, no. 1, pp. 015708–015715.
34. Wu B., Zhou S., Ren J., Chen D., Jiang X., Zhu C., Qiu J. Appl. Phys. B. 2007, vol. 87, no. 4, pp. 697–699.
35. Khimicheskaya tekhnologiya stekla i sitallov [Chemical technology of glass and glassce-ramics]. Ed. N. M. Pavlushkina. Moscow: Stroyizdat, 1983, 429 p.
36. Nanokristallicheskie materially [Nanocrystalline materials]. Ed. A. I. Gusev, A. A. Rempel'. Moscow: Fizmatlit, 2000, 224 p.
37. Golubkov V. V, Dymshits O. S., Zhilin A. A. Fizika i khimiya stekla [Physics and chem-istry of glass]. 2003, vol. 29, no. 3, pp. 359–377.

 

Дата создания: 18.07.2014 13:32
Дата обновления: 23.07.2014 11:12